资源类型

期刊论文 581

年份

2024 1

2023 61

2022 44

2021 33

2020 28

2019 38

2018 34

2017 27

2016 29

2015 22

2014 16

2013 14

2012 37

2011 31

2010 56

2009 20

2008 18

2007 15

2006 8

2005 6

展开 ︾

关键词

天然气 11

勘探开发 7

普光气田 7

可持续发展 5

页岩气 5

天然气水合物 4

温室气体 4

中国 3

CO2封存 2

三相界面 2

中国近海 2

二氧化碳捕集 2

低碳 2

低碳经济 2

催化剂 2

光声 2

关键技术 2

分布特征 2

大型化成藏 2

展开 ︾

检索范围:

排序: 展示方式:

CO, N, and CO/N mixed gas injection for enhanced shale gas recovery and CO geological storage

《能源前沿(英文)》 2023年 第17卷 第3期   页码 428-445 doi: 10.1007/s11708-023-0865-9

摘要: In this work, using fractured shale cores, isothermal adsorption experiments and core flooding tests were conducted to investigate the performance of injecting different gases to enhance shale gas recovery and CO2 geological storage efficiency under real reservoir conditions. The adsorption process of shale to different gases was in agreement with the extended-Langmuir model, and the adsorption capacity of CO2 was the largest, followed by CH4, and that of N2 was the smallest of the three pure gases. In addition, when the CO2 concentration in the mixed gas exceeded 50%, the adsorption capacity of the mixed gas was greater than that of CH4, and had a strong competitive adsorption effect. For the core flooding tests, pure gas injection showed that the breakthrough time of CO2 was longer than that of N2, and the CH4 recovery factor at the breakthrough time (RCH4) was also higher than that of N2. The RCH4 of CO2 gas injection was approximately 44.09%, while the RCH4 of N2 was only 31.63%. For CO2/N2 mixed gas injection, with the increase of CO2 concentration, the RCH4 increased, and the RCH4 for mixed gas CO2/N2 = 8:2 was close to that of pure CO2, about 40.24%. Moreover, the breakthrough time of N2 in mixed gas was not much different from that when pure N2 was injected, while the breakthrough time of CO2 was prolonged, which indicated that with the increase of N2 concentration in the mixed gas, the breakthrough time of CO2 could be extended. Furthermore, an abnormal surge of N2 concentration in the produced gas was observed after N2 breakthrough. In regards to CO2 storage efficiency (Sstorage-CO2), as the CO2 concentration increased, Sstorage-CO2 also increased. The Sstorage-CO2 of the pure CO2 gas injection was about 35.96%, while for mixed gas CO2/N2 = 8:2, Sstorage-CO2 was about 32.28%.

关键词: shale gas     gas injection     competitive adsorption     enhanced shale gas recovery     CO2 geological storage    

温室气体提高采收率的资源化利用及地下埋存

沈平平,江怀友

《中国工程科学》 2009年 第11卷 第5期   页码 54-59

摘要:

全球气候变化是人类迄今面临的既重大又复杂的环境问题,由于温室气体大量排放而引起的全球气候变暖问题日趋严峻,正在严重地威胁着人类赖以生存的环境,国际社会必须采取积极有效措施。2006年中国国家科技部批准国家“九七三”项目——温室气体提高石油采收率的资源化利用及地下埋存研究。建立适合中国国情的CO2高效利用和埋存体系;实现CO2减排的社会效益和CO2高效利用的经济效益;发展适合中国国情的CO2埋存地下理论、多相多组分相态理论、多相多组分非线性渗流理论和CO2捕集与储运理论。通过上述基础研究,形成具有自主知识产权的CO2地质埋存和高效利用的综合技术,使中国CO2安全埋存—高效利用研究处于国际水平。必将为全球资源和环境的高水平、高效益开发和可持续发展提供理论及实践依据。

关键词: 温室气体资源化利用     CO2地下埋存     提高采收率    

Performance assessment of a power-to-gas process based on reversible solid oxide cell

Hanaâ Er-rbib, Nouaamane Kezibri, Chakib Bouallou

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 697-707 doi: 10.1007/s11705-018-1774-z

摘要:

Due to the foreseen growth of sustainable energy utilization in the upcoming years, storage of the excess production is becoming a rather serious matter. In this work, a promising solution to this issue is investigated using one of the most emerging technologies of electricity conversion: reversible solid oxide cells (RSOC). A detailed model was created so as to study the RSOC performance before implementing it in the global co-electrolysis Aspen PlusTM model. The model was compared to experimental results and showed good agreement with the available data under steady state conditions. The system was then scaled up to a 10 MW co-electrolysis unit operating at 1073 K and 3 bar. The produced syngas is subsequently directed to a methanation unit to produce a synthetic natural gas (SNG) with an equivalent chemical power of 8.3 MWth. Additionally, as a result of a heat integration analysis, the methanation process provides steam and electricity to operate the rest of the units in the process. A final CO2 capture step is added to ensure the required specifications of the produced SNG for gas network injection. Lastly, the overall performance of the power-to-gas process was evaluated taking into account the energy consumption of each unit.

关键词: renewable electricity     storage     co-electrolysis     methanation     carbone capture    

A review on transport of coal seam gas and its impact on coalbed methane recovery

Geoff G.X. WANG, Xiaodong ZHANG, Xiaorong WEI, Xuehai FU, Bo JIANG, Yong QIN

《化学科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 139-161 doi: 10.1007/s11705-010-0527-4

摘要: This paper presents a summary review on mass transport of coal seam gas (CSG) in coal associated with the coalbed methane (CBM) and CO geo-sequestration enhanced CBM (CO -ECBM) recovery and current research advances in order to provide general knowledge and fundamental understanding of the CBM/ECBM processes for improved CBM recovery. It will discuss the major aspects of theory and technology for evaluation and development of CBM resources, including the gas storage and flow mechanism in CBM reservoirs in terms of their differences with conventional natural gas reservoirs, and their impact on CBM production behavior. The paper summarizes the evaluation procedure and methodologies used for CBM exploration and exploitation with some recommendations.

关键词: mass transport     coal seam gas (CSG)     coalbed methane (CBM)     coal     CBM recovery     carbon dioxide storage    

纳米多孔储气材料的物理吸附特性研究进展 Review

Katie A. Cychosz,Matthias Thommes

《工程(英文)》 2018年 第4卷 第4期   页码 559-566 doi: 10.1016/j.eng.2018.06.001

摘要:

评估纳米多孔材料的吸附性能并确定它们的结构表征,对于将这类材料用于包括气体储存在内的许多应用至关重要。气体吸附法可用于此表征,因为它可以评估从微孔到中孔的各种孔径。在过去的20 年中,关于有序纳米多孔材料中流体的吸附和相行为的知识以及基于统计力学的最先进的方法的创新和发展,如分子模拟和密度泛函理论,都取得了重大进展。再结合高分辨率的亚临界和超临界流体吸附实验程序,使物理吸附结构表征取得了显著进步。笔者不仅讨论了流体在具有明确孔隙结构的各种纳米多孔材料中基础吸附机理的一些重要和中心特征,还讨论了这些特征对促进物理吸附表征和储存气体应用的重要性。

关键词: 吸附     表征     高压吸附     纳米多孔材料    

Energy storage resources management: Planning, operation, and business model

《工程管理前沿(英文)》   页码 373-391 doi: 10.1007/s42524-022-0194-4

摘要: With the acceleration of supply-side renewable energy penetration rate and the increasingly diversified and complex demand-side loads, how to maintain the stable, reliable, and efficient operation of the power system has become a challenging issue requiring investigation. One of the feasible solutions is deploying the energy storage system (ESS) to integrate with the energy system to stabilize it. However, considering the costs and the input/output characteristics of ESS, both the initial configuration process and the actual operation process require efficient management. This study presents a comprehensive review of managing ESS from the perspectives of planning, operation, and business model. First of all, in terms of planning and configuration, it is investigated from capacity planning, location planning, as well as capacity and location combined planning. This process is generally the first step in deploying ESS. Then, it explores operation management of ESS from the perspectives of state assessment and operation optimization. The so-called state assessment refers to the assessment of three aspects: The state of charge (SOC), the state of health (SOH), and the remaining useful life (RUL). The operation optimization includes ESS operation strategy optimization and joint operation optimization. Finally, it discusses the business models of ESS. Traditional business models involve ancillary services and load transfer, while emerging business models include electric vehicle (EV) as energy storage and shared energy storage.

关键词: energy storage system     energy storage resources management     planning configuration     operational management     business model    

Greenhouse gas emissions from different pig manure management techniques: a critical analysis

Conor Dennehy, Peadar G. Lawlor, Yan Jiang, Gillian E. Gardiner, Sihuang Xie, Long D Nghiem, Xinmin Zhan

《环境科学与工程前沿(英文)》 2017年 第11卷 第3期 doi: 10.1007/s11783-017-0942-6

摘要: Manure management is the primary source of greenhouse gas (GHG) emissions from pig farming, which in turn accounts for 18% of the total global GHG emissions from the livestock industry. In this review, GHG emissions (N O and CH emissions in particular) from individual pig manure (PGM) management practices (European practises in particular) are systematically analyzed and discussed. These manure management practices include manure storage, land application, solid/liquid separation, anaerobic digestion, composting and aerobic wastewater treatment. The potential reduction in net GHG emissions by changing and optimising these techniques is assessed. This review also identifies key research gaps in the literature including the effect of straw covering of liquid PGM storages, the effect of solid/liquid separation, and the effect of dry anaerobic digestion on net GHG emissions from PGM management. In addition to identifying these research gaps, several recommendations including the need to standardize units used to report GHG emissions, to account for indirect N O emissions, and to include a broader research scope by conducting detailed life cycle assessment are also discussed. Overall, anaerobic digestion and compositing to liquid and solid fractions are best PGM management practices with respect to their high GHG mitigation potential.

关键词: CH4     N2O     Storage     Anaerobic digestion     Composting     Separation    

Numerical simulation and analysis of periodically oscillating pressure characteristics of inviscid flow in a rolling pipe

Yan GU, Yonglin JU

《能源前沿(英文)》 2012年 第6卷 第1期   页码 21-28 doi: 10.1007/s11708-012-0173-2

摘要: Floating liquefied natural gas (LNG) plants are gaining increasing attention in offshore energy exploitation. The effects of the periodically oscillatory motion on the fluid flow in all processes on the offshore plant are very complicated and require detailed thermodynamic and hydrodynamic analyses. In this paper, numerical simulations are conducted by computational fluid dynamics (CFD) code combined with user defined function (UDF) in order to understand the periodically oscillating pressure characteristics of inviscid flow in the rolling pipe. The computational model of the circular pipe flow is established with the excitated rolling motion, at the excitated frequencies of 1–4 rad/s, and the excitated amplitudes of 3°–15°, respectively. The influences of flow velocities and excitated conditions on pressure characteristics, including mean pressure, frequency and amplitude are systematically investigated. It is found that the pressure fluctuation of the inviscid flow remains almost constant at different flow velocities. The amplitude of the pressure fluctuation increases with the increasing of the excitated amplitude, and decreases with the increasing of the excitated frequency. It is also found that the period of the pressure fluctuation varies with the excitated frequency. Furthermore, theoretical analyses of the flow in the rolling circular pipe are conducted and the results are found in qualitative agreement with the numerical simulations.

关键词: pressure fluctuation     rolling     floating production storage and offloading unit for liquefied natural gas (LNG-FPSO) offshore    

Integrated energy in Germany–A critical look at the development and state of integrated energies in Germany

Saman AMANPOUR, Daniel HUCK, Mark KUPRAT, Harald SCHWARZ

《能源前沿(英文)》 2018年 第12卷 第4期   页码 493-500 doi: 10.1007/s11708-018-0570-2

摘要: In the face of global warming and a scarcity of resources, future energy systems are urged to undergo a major and radical transformation. The recognition of the need to embrace renewable energy technologies and to move toward decarbonization has led to significant changes in the German energy generation, consumption and infrastructure. Ambitious German national plans to decrease carbon dioxide emissions on one side, and the unpredictable and volatile nature of renewable energy sources on the other side have elevated the importance of integrated energies in recent years. The deployment of integrated technologies as a solution to interlink various infrastructures creates opportunities for increasing the reliability of energy systems, minimizing environmental impacts and maximizing the share of renewable resources. This paper discusses the role of integrated energy systems in supporting of sustainable solutions for future energy transitions. Moreover, the reinforcement of this movement with the help of different technologies will be discussed and the development of integrated energy systems in Germany will be reviewed.

关键词: integrated energy     renewable energies     energy transition     power-to-gas     power-to-heat     power-to-mobility     energy storage    

Encapsulation of polyethylene glycol in cellulose-based porous capsules for latent heat storage and light-to-thermal

《化学科学与工程前沿(英文)》 2023年 第17卷 第8期   页码 1038-1050 doi: 10.1007/s11705-022-2279-3

摘要: Phase change materials are potential candidates for the application of latent heat storage. Herein, we fabricated porous capsules as shape-stable materials from cellulose-based polyelectrolyte complex, which were first prepared using cellulose 6-(N-pyridinium)hexanoyl ester as the cationic polyelectrolyte and carboxymethyl cellulose as the anionic polyelectrolyte to encapsulate polyethylene glycol by the vacuum impregnation method. Furthermore, the multi-walled carbon nanotube or graphene oxide, which were separately composited into the polyelectrolytes complex capsules to enhance thermal conductivity and light-to-thermal conversion efficiency. These capsules owned a typical core–shell structure, with an extremely high polyethylene glycol loading up to 34.33 g∙g‒1. After loading of polyethylene glycol, the resulted cellulose-based composite phase change materials exhibited high thermal energy storage ability with the latent heat up to 142.2 J∙g‒1, which was 98.5% of pure polyethylene glycol. Further results showed that the composite phase change materials demonstrated good form-stable property and thermal stability. Moreover, studies involving light-to-thermal conversion determined that composite phase change materials exhibited outstanding light-to-thermal conversion performance. Considering their exceptional comprehensive features, innovative composite phase change materials generated from cellulose presented a highly interesting choice for thermal management and renewable thermal energy storage.

关键词: cellulose     polyelectrolytes     phase change materials     thermal energy storage     light-to-thermal conversion    

Techno-economic assessment of providing control energy reserves with a biogas plant

Ervin Saracevic, David Woess, Franz Theuretzbacher, Anton Friedl, Angela Miltner

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 763-771 doi: 10.1007/s11705-018-1776-x

摘要:

Grid stability is being challenged by the increasing integration of power plants with volatile power generation into the energy system. Power supply fluctuations must be compensated by energy system flexibility. The storability of the energy carrier enables biogas plants to generate power flexibly. In this study, the technical and economic effects of providing positive secondary control energy reserves with an Austrian biogas plant were assessed. The plant’s main focus lies in biomethane production with the option of heat and power generation through combined heat and power (CHP) units. A detailed simulation model of the investigated biogas plant was developed, which is presented in this work. Ex-post simulations of one year of flexible plant operation were conducted with this model. The findings show that the installed biogas storage capacity is sufficient to provide control energy reserves while simultaneously producing biomethane. Profitability of providing control energy reserves largely depends on the prices at the control energy market and on CHP unit start-up costs. A cost efficiency analysis demonstrated that investing in a hot water tank with a volume of 5 m3 for short-term heat storage turned out to be economically viable.

关键词: biogas plant     process simulation     control energy reserves     economic assessment     gas storage    

Can energy storage make off-grid photovoltaic hydrogen production system more economical?

《工程管理前沿(英文)》   页码 672-694 doi: 10.1007/s42524-022-0245-x

摘要: Under the ambitious goal of carbon neutralization, photovoltaic (PV)-driven electrolytic hydrogen (PVEH) production is emerging as a promising approach to reduce carbon emission. Considering the intermittence and variability of PV power generation, the deployment of battery energy storage can smoothen the power output. However, the investment cost of battery energy storage is pertinent to non-negligible expenses. Thus, the installation of energy-storage equipment in a PVEH system is a complex trade-off problem. The primary goals of this study are to compare the engineering economics of PVEH systems with and without energy storage, and to explore time nodes when the cost of the former scenario can compete with the latter by factoring the technology learning curve. The levelized cost of hydrogen (LCOH) is a widely used economic indicator. Represented by seven areas in seven regions of China, results show that the LCOH with and without energy storage is approximately 22.23 and 20.59 yuan/kg in 2020, respectively. In addition, as technology costs drop, the LCOH of a PVEH system with energy storage will be less than that without energy storage in 2030.

关键词: hydrogen     off-grid photovoltaic     energy storage     LCOH     engineering economics    

Analysis of flow and heat transfer characteristics of porous heat-storage wall in greenhouse

OUYANG Li, LIU Wei

《能源前沿(英文)》 2008年 第2卷 第4期   页码 406-409 doi: 10.1007/s11708-008-0094-2

摘要: The flow and heat transfer characteristics of porous heat-storage wall in greenhouse are studied by using the one-dimensional steady energy two-equation model for saturated porous medium. The results show that the heat exchange between the air and the solid matrix of the porous heat-storage wall depends upon the inlet air velocity, the porosity and the permeability of porous medium, and the thermal conductivity of the solid matrix. Because the incidence of solar radiation on the porous heat-storage wall is not uniform, the new composite porous solar wall with different porosity is proposed to reduce the disadvantageous effect.

关键词: incidence     thermal conductivity     heat-storage     exchange     composite    

Machine perfusion versus cold storage of livers: a meta-analysis

null

《医学前沿(英文)》 2016年 第10卷 第4期   页码 451-464 doi: 10.1007/s11684-016-0474-7

摘要:

Different organ preservation methods are key factors influencing the results of liver transplantation. In this study, the outcomes of experimental models receiving donation after cardiac death (DCD) livers preserved through machine perfusion (MP) or static cold storage (CS) were compared by conducting a meta-analysis. Standardized mean difference (SMD) and 95% confidence interval (CI) were calculated to compare pooled data from two animal species. Twenty-four studies involving MP preservation were included in the meta-analysis. Compared with CS preservation, MP can reduce the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and hyaluronic acid (HA) and the changes in liver weight. By contrast, MP can enhance bile production and portal vein flow (PVF). Alkaline phosphatase (ALP) levels and histological changes significantly differed between the two preservation methods. In conclusion, MP of DCD livers is superior to CS in experimental animals.

关键词: machine perfusion     cold storage     DCD     meta-analysis    

Experimental study and assessment of thermal energy storage mortar with paraffin/recycled brick powder

Luchen HAO; Jianzhuang XIAO; Wanzhi CAO; Jingting SUN

《结构与土木工程前沿(英文)》 2022年 第16卷 第10期   页码 1301-1314 doi: 10.1007/s11709-022-0883-4

摘要: Thermal energy storage recycled powder mortar (TESRM) was developed in this study by incorporating paraffin/recycled brick powder (paraffin/BP) composite phase change materials (PCM). Fourier transform infrared and thermogravimetric analysis results showed that paraffin/BP composite PCM had good chemical and thermal stability. The onset melting temperature and latent heat of the composite PCM were 46.49 °C and 30.1 J·g−1. The fresh mortar properties and hardened properties were also investigated in this study. Paraffin/BP composite PCM with replacement ratio of 0%, 10%, 20%, and 30% by weight of cement were studied. The results showed that the static and dynamic yield stresses of TESRM were 699.4% and 172.9% higher than those of normal mortar, respectively. The addition of paraffin/BP composite PCM had a positive impact on the mechanical properties of mortar at later ages, and could also reduce the dry shrinkage of mortar. The dry shrinkage of TESRM had a maximum reduction about 26.15% at 120 d. The thermal properties of TESRM were better than those of normal mortar. The thermal conductivity of TESRM was 36.3% less than that of normal mortar and the heating test results showed that TESRM had good thermal energy storage performance.

关键词: recycled powder mortar     recycled brick powder     thermal energy storage     paraffin     phase change material    

标题 作者 时间 类型 操作

CO, N, and CO/N mixed gas injection for enhanced shale gas recovery and CO geological storage

期刊论文

温室气体提高采收率的资源化利用及地下埋存

沈平平,江怀友

期刊论文

Performance assessment of a power-to-gas process based on reversible solid oxide cell

Hanaâ Er-rbib, Nouaamane Kezibri, Chakib Bouallou

期刊论文

A review on transport of coal seam gas and its impact on coalbed methane recovery

Geoff G.X. WANG, Xiaodong ZHANG, Xiaorong WEI, Xuehai FU, Bo JIANG, Yong QIN

期刊论文

纳米多孔储气材料的物理吸附特性研究进展

Katie A. Cychosz,Matthias Thommes

期刊论文

Energy storage resources management: Planning, operation, and business model

期刊论文

Greenhouse gas emissions from different pig manure management techniques: a critical analysis

Conor Dennehy, Peadar G. Lawlor, Yan Jiang, Gillian E. Gardiner, Sihuang Xie, Long D Nghiem, Xinmin Zhan

期刊论文

Numerical simulation and analysis of periodically oscillating pressure characteristics of inviscid flow in a rolling pipe

Yan GU, Yonglin JU

期刊论文

Integrated energy in Germany–A critical look at the development and state of integrated energies in Germany

Saman AMANPOUR, Daniel HUCK, Mark KUPRAT, Harald SCHWARZ

期刊论文

Encapsulation of polyethylene glycol in cellulose-based porous capsules for latent heat storage and light-to-thermal

期刊论文

Techno-economic assessment of providing control energy reserves with a biogas plant

Ervin Saracevic, David Woess, Franz Theuretzbacher, Anton Friedl, Angela Miltner

期刊论文

Can energy storage make off-grid photovoltaic hydrogen production system more economical?

期刊论文

Analysis of flow and heat transfer characteristics of porous heat-storage wall in greenhouse

OUYANG Li, LIU Wei

期刊论文

Machine perfusion versus cold storage of livers: a meta-analysis

null

期刊论文

Experimental study and assessment of thermal energy storage mortar with paraffin/recycled brick powder

Luchen HAO; Jianzhuang XIAO; Wanzhi CAO; Jingting SUN

期刊论文